



### IMAGENS POR RESSONÂNCIA MAGNÉTICA

#### MARINA DE SÁ REBELO LABORATÓRIO DE INFORMÁTICA BIOMÉDICA INCOR – HC FMUSP



#### RM em perspectiva



Caracterizada por uma excelente resolução de contraste de tecidos moles.

Permite a diferenciação detalhada de estruturas anatômicas internas

Imagens obtidas sem o uso de materiais radioativos permitem a visualização da anatomia Interna com excelente resolução espacial



"The need 'to see more' has always been part of the diagnostic equation... the beauty of MRI's absence of radiation and the ability to combine traditional anatomic (form) images with the power of functional imaging techniques invited the idea of covering more (actually the entirety) of the body without the need for any injection." Dr. Raj Attariwala- Prenuvo Inc.



### Ciência & Tecnologia



Combina química, física, matemática, engenharia, métodos computacionais e medicina

A manipulação de parâmetros do processo de aquisição permite criar imagens de alto contraste ▶ T1, T2



Propriedades magnéticas dos tecidos geram contraste na imagem (SWI: imagem ponderada por susceptibilidade): Alterações na oxigenação do sangue - fMRI







Princípios físicos >Spin nuclear ≻Magnetização Imagens de MRI >Detecção do sinal ≻Formação de imagens >Aquisição de imagens: hardware ≻Contraste em RMI Ressonância funcional





# Princípios Físicos Spin nuclear e Magnetização



#### Spin nuclear



#### Núcleos contêm prótons e nêutrons com movimento angular intrínseco ⇒ momento angular de spin nuclear ou SPIN







 Prótons contêm carga elétrica
Pode-se considerar que a carga elétrica do próton é distribuída e rotaciona ao longo do eixo central, como resultado do seu momento angular



distribuição de carga em movimento de rotação produzindo um campo magnético



o próton visto como um dipolo magnético



o arranjo é análogo a um imã

geração de um momento de dipolo magnético normal ao plano de circulação das cargas





momento magnético

Núcleos:

Em muitos núcleos os prótons e nêutrons estão emparelhados de tal forma que seus spins e momentos magnéticos se cancelam

Núcleo com número ímpar de prótons + nêutrons ⇒ exibe spin e momento magnético

| Elemento         | Protons | Neutrons | I   | ω (MHz, 1.5T) |
|------------------|---------|----------|-----|---------------|
| чн               | 1       | 0        | 1⁄2 | 63.864        |
| <sup>12</sup> C  | 6       | 6        | 0   | 0             |
| <sup>14</sup> N  | 7       | 7        | 1   | 4.613         |
| <sup>16</sup> O  | 8       | 8        | 0   | 0             |
| <sup>19</sup> F  | 9       | 10       | 1⁄2 | 60.081        |
| <sup>23</sup> Na | 11      | 12       | 3/2 | 16.893        |
| <sup>31</sup> P  | 15      | 16       | 1⁄2 | 25.898        |





momento magnético

Núcleos:

Em muitos núcleos os prótons e nêutrons estão emparelhados de tal forma que seus spins e momentos magnéticos se cancelam

Núcleo com número ímpar de prótons + nêutrons ⇒ exibe spin e momento magnético

Átomo de hidrogênio (um único próton)
Elemento mais abundante no corpo;
Gera o sinal de NMR mais forte entre os núcleos.





#### Magnetização macroscópica



Normalmente os momentos magnéticos nucleares têm direção aleatória Não existe campo magnético macroscópico





Sob ação de um forte campo magnético estático externo

- o próton vai se comportar como uma pequena bússola
- A direção do seu momento magnético tende a se alinhar ao campo externo





#### Resultado em uma amostra





Partículas elementares não apresentam um comportamento tão simples!



#### Spin up e Spin down



#### ▶ Próton $\Rightarrow$ partícula elementar

- Comportamento descrito pelas leis de Mecânica Quântica
- Sob a ação de B<sub>0</sub>, a direção do momento de dipolo não vai ser exatamente paralela ao campo aplicado
- 2. pode possuir mais de um tipo de movimento (ou estado)
  - Depende do átomo.
- Próton do átomo de hidrogênio: 2 estados
  - Spin up e spin down

► Momento de dipolo forma um ângulo ( $\neq$  0) com a direção de B<sub>0</sub>







Spin up (paralelo) spin down (anti-paralelo)







Spin up (paralelo)



#### Frequência de Larmor





Spins em rotação giram ao redor do eixo de B0, realizando um movimento de cone

 $\Rightarrow$  precessão

A frequência de precessão, chamada de frequência de Larmor é dada por:  $W_0 = \gamma B_0$  $\gamma$  razão giromagnética (prótons de H: 42.5 MHz/Tesla)



#### Resultado em uma amostra





Os prótons vão de alinhar nos dois estados Prótons spin up > prótons spin down

#### Níveis de Energia



#### Diagrama de Zeeman



Sistemas físicos tendem a ocupar estado de menor energia

Se T = 0 ⇒ todos os prótons estariam alinhados paralelamente ao campo

A diferença entre os estados é proporcional à intensidade do campo estático

A diferença de energia entre os dois estados é muito pequena ( $\hbar = h*2\Pi = 6,63*10^{-34} \text{ m}^2.\text{kg/s}*2\Pi$ )

energia térmica em temperaturas mais elevadas faz com que os dois estados estejam quase igualmente ocupados



### Magnetização da amostra



O número de prótons que ocupa o estado de menor energia é ligeiramente maior que o de maior energia



Amostra magnetizada

 À temperatura corporal e nas faixas de campo utilizadas em MRI (1.5 T) o excesso de prótons paralelos é de 0.3 a 5 por milhão





A amostra vai estar magnetizada na presença de B<sub>0</sub>, com um valor M<sub>0</sub>, conhecido como magnetização efetiva

M<sub>0</sub> é a fonte de sinal em todos os experimentos de ressonância magnética

direção é a mesma de B<sub>0</sub>
constante no tempo







# Imagens por RM





#### Deteção do sinal







#### Detecção do sinal



 O campo magnético externo gera um campo estático na amostra

Para captar um sinal é necessário provocar uma perturbação no vetor de magnetização de tal forma a torná-lo mensurável



Provocar uma oscilação para modificar a configuração do sistema



#### Detecção do sinal



Fornecer energia ao sistema e provocar a transição dos prótons entre os estados energéticos



 Atingir condição de ressonância:
absorção e posterior emissão de energia do sistema (ΔΕ)

A diferença de energia entre os estados paralelo e anti-paralelo está na faixa de radio-frequência (40-130 MHz)

## Espectro eletromagnético







# O efeito do campo de radiofrequência



Irradiação dos prótons por um sinal de RF com fótons de energia igual à diferença entre os estados provoca a transição de um certo número de prótons para o estado anti-paralelo

Fim da aplicação de RF: volta ao estado paralelo é acompanhada da emissão de energia equivalente à diferença entre os dois níveis





# O efeito do campo de radiofrequência



Condição de ressonância: pulso de RF com frequência igual à frequência dos prótons (Larmor)

Prótons começam a precessar em fase, produzindo um sinal magnético coerente que pode ser medido (componente transversal)





#### Modelo macroscópico



Por convenção, o componente B<sub>1</sub> da radiação de radiofrequência é aplicado na direção X perpendicular ao campo estático B<sub>0</sub>

 $B_0$  campo externo (~ 1.5 - 3 T)  $B_1$  campo magnético fraco (~50 mT)





### Modelo macroscópico



Por convenção, o componente B<sub>1</sub> da radiação de radiofrequência é aplicado na direção X perpendicular ao campo estático B<sub>0</sub>

 $B_0$  campo externo (~ 1.5 - 3 T)  $B_1$  campo magnético fraco



- •Campo magnético da Terra = 0.3 a 0.7 Gauss
- •Imã de refrigerador = 0.01T



### Modelo macroscópico



O campo magnético B<sub>1</sub> provocará uma rotação da magnetização efetiva (M<sub>0</sub>) na direção de B<sub>1</sub>:



 O vetor magnetização iniciará um movimento complexo, do tipo espiral





#### Referencial giratório



Em um referencial girando com frequência igual à frequência de Larmor, o movimento do vetor magnetização é mais simples









Referencial giratório



Em um referencial girando com frequência igual à frequência de Larmor, o movimento do vetor ma







#### Movimento da magnetização Flip Angle

O movimento de rotação de M<sub>0</sub> ao redor de B<sub>1</sub> tem frequência angular:

$$\omega_1 = \gamma B_1$$

Se o pulso de RF for aplicado por um tempo t, M<sub>0</sub> vai sofrer uma rotação:

$$\alpha = \omega_1 t = \gamma B_1 t$$



















Após a aplicação de um pulso de 90°, o vetor de magnetização localiza-se no plano x-y e precessa ao redor do eixo z

A sua frequência de precessão é a frequência de Larmor







Se uma bobina for colocada próxima à amostra, a variação temporal do campo magnético gerado pela magnetização induzirá uma corrente alternada, com frequência igual à frequência de Larmor. Esse sinal detectado é conhecido como

"Free Induction Decay (FID)"






































"Free" refere-se ao fato de que o sinal é obtido sem a presença do campo magnético de radio frequência - B<sub>1</sub>
"Induction" indica que a corrente foi produzida utilizando-se o princípio de que um campo magnético variável dentro de uma bobina induz corrente elétrica









"Decay" indica que o sinal decresce com o tempo em um processo conhecido como relaxação







# Construção do sinal



A Transformada de Fourier (TF) do FID captado pela bobina é um gráfico de amplitude do sinal recebido em função de sua frequência







# Transformada de Fourier









# O retorno ao equilíbrio





# O retorno ao equilíbrio



A magnetização M<sub>0</sub> perturbada em seu equilíbrio por um pulso de radio frequência de 90° rotaciona no plano x-y, com todos os prótons precessando em fase

Parte dos prótons em estado de maior energia





# O retorno ao equilíbrio



Ao fim da aplicação do pulso de RF, dois eventos distintos ocorrem com os prótons individuais

voltarão ao estado de menor energia (T<sub>1</sub>)



seu movimento de precessão será defasado (T<sub>2</sub>)





# O retorno ao equilíbrio



Esses eventos provocam dois processos simultâneos - que acontecem separadamente:

- A componente perpendicular (Mxy) do vetor Magnetização diminui muito rapidamente
- A componente paralela (Mz) se recupera lentamente







# T1 - relaxação spin-rede relaxação longitudinal



#### Em equilíbrio térmico

- excesso de prótons precessionando na orientação paralela
- Após a aplicação de um pulso de 90°
  - um número de prótons aproximadamente igual à metade do excesso passa a precessionar na orientação anti-paralela
- O número de prótons nos dois estados de energia é igual
- A magnetização fica com componente longitudinal (paralela a B<sub>0</sub>) nula





Após o fim da aplicação da RF, a maioria dos prótons retorna ao alinhamento paralelo, restabelecendo as condições iniciais

- transição de um estado de maior energia para um estado de menor energia
- o sistema libera energia equivalente à diferença entre os dois estados
- esse excesso de energia é fornecido ao meio (rede) que rodeia o próton, principalmente sob a forma de agitação térmica



T1: tempo para que 63% da magnetização longitudinal inicial seja restituída







Imediatamente após a aplicação do pulso de 90°

- prótons precessam em fase
- magnetização transversal é máxima
- Com o fim do pulso de RF
  - os prótons experimentam campos magnéticos ligeiramente diferentes
  - alguns precessam ligeiramente mais rápido (ou mais devagar) do que a frequência de Larmor







O conjunto de prótons começa a precessionar em fases diferentes e a magnetização transversal diminui

Após um certo tempo, toda a coerência de fase é perdida e a magnetização efetiva no plano transversal é nula







- A pequena diferença no valor do campo magnético estático em cada próton é ocasionada por dois fatores
  - presença de inomogeneidades no campo magnético B<sub>0</sub>
  - campos magnéticos gerados pelos outros prótons
- A magnetização transversal decai exponencialmente em função em T<sub>2</sub>\*



T2\*: tempo para que a magnetização transversal seja 37% do valor máximo







- A pequena diferença no valor do campo magnético estático em cada próton é ocasionada por dois fatores
  - presença de inomogeneidades no campo magnético B<sub>0</sub>
  - campos magnéticos gerados pelos outros prótons
- A magnetização transversal decai exponencialmente em função em T<sub>2</sub>\*



T2\*: tempo para que a magnetização transversal seja 37% do valor máximo







Tempo que reflete a perda de coerência devido apenas à presença de outros prótons

- depende do meio em que o próton está inserido
- varia de acordo com o órgão e se o tecido é normal ou patológico
- O FID reflete a diminuição da magnetização transversal, e é função de T<sub>2</sub>\*

O parâmetro de interesse na formação de imagens médicas é T<sub>2</sub>, pois o que interessa observar é a diferença entre os tecidos





Para separar as duas fontes de variação do campo e isolar a componente causada pela presença de outros prótons utiliza-se a técnica de spin-eco



Pulso de 180° Recupera fase devido às inomogeneidades de campo Eco: sinal é mais fraco Efeito T2 (outros prótons)





# Para separar as duas fontes de variação do campo e isolar a componente causada pela presença de out

técnica de spin-









Para separar as duas fontes de variação do campo e isolar a componente causada pela presença de outros prótons utiliza-se a

técnica de spin-e











- T<sub>R</sub> (tempo de repetição ): tempo entre a aplicação dos pulsos de 90°
- T<sub>E</sub> (tempo de Eco): tempo entre a aplicação do pulso de 90° e a formação do eco
- Podem ser aplicados mais pulsos de 180° com a geração de mais pulsos de eco
- Para aplicar outra sequência de eco nas mesmas condições da primeira, é necessário que toda a magnetização longitudinal tenha sido recuperada (após ~ 5.T<sub>1</sub>)



## Resumindo ....









# Formação de imagens





# Formação de imagens



#### Variações Espaciais no Campo Magnético

$$w_i = \gamma \left( B_0 + \vec{G} \bullet \vec{r}_i \right)$$







Bo

 $espessurado slice = \frac{B.w}{a}$  $\gamma G_{SS}$ 



## Frequency encoding gradient-GFE

















### Resultado em um corte







Receive

## Resumindo ....





0

V1





# Aquisição de imagens Hardware





# Aquisição de imagens



#### Campo magnético estático $(B_0)$

Mais comum: eletroímãs supercondutores Consistem de uma bobina tornada supercondutora pelo congelamento com hélio líquido e imersa em nitrogênio líquido

#### Gradientes de campo ( $\Delta B$ )

Produzem variação linear na intensidade de B<sub>0</sub>, que é adicionada ao campo principal (B<sub>0</sub> >>  $\Delta$ B)

### Bobinas (RF)

Componentes para transmissão e recepção de ondas de rádio frequência



# Aquisição de imagens



#### Campo magnético estático (B<sub>0</sub>)



#### Bobinas (RF)

Componentes para transmissão e recepção de ondas de rádio frequência





Fechado tradicional Abertura ~ 60 cm (P Open MRI Aberto em 3 ou 4 lados: > conforto 0.35 T a 0.7 T (até 1.2 T) (P Wide bore MRI 1.5 T (até 3T) 5 Abertura ~ 70 cm: > conforto E)


Campos Magnéticos:
Low field → até 0.3T
Mid-field → 0.3T até 1.0T
High field → 1.0T até 3.0T
Very high field → 3.0T até 7.0T
Ultra high field → acima de 7.0T









Wide bore MRI



Standard (closed bore) MRI

#### Stand-up MRI



#### open MRI





Sequências de pulso



Contêm as instruções de hardware necessárias para a aquisição dos dados da forma desejada





# Sequências de pulso



A intensidade do sinal resultante em cada elemento da imagem é determinada pelos parâmetros de medida selecionados pelo usuário e pelas variáveis dadas pela sequência de pulsos

Diferentes técnicas de aquisição usam diferentes sequências de pulso



A intensida elemento o parâmetros usuário e per sequência

Seq

Diferentes s diferentes s

|                  | Type of sequence                                     | Advantages                                                          | Disadvantages                                                           |
|------------------|------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|
| l                | Spin echo (SE)                                       | Contrast                                                            | Slow (especially in T2)                                                 |
|                  | Multiecho SE                                         | DP + T2 images                                                      | Slow, even if acquisition of the 2nd imag does not lengthen acquisition |
|                  | Fast SE                                              | Faster than simple SE<br>simple<br>ES contrast                      | Fat shown as a hypersignal                                              |
| 7                | Ultrafast SE                                         | Even faster                                                         | Low signal to noise ratio                                               |
|                  | IR                                                   | T1 weighting<br>Tissue suppression signal if<br>TI is adapted to T1 | Longer TR / acquisition time                                            |
|                  | STIR                                                 | Fat signal suppression                                              | Longer TR / acquisition time                                            |
|                  | FLAIR                                                | CSF signal suppression                                              | Longer TR / acquisition time                                            |
|                  | Gradient echo (GE)                                   | + speed                                                             | T2* not T2                                                              |
| )<br>(<br>†<br>S | GE with spoiled residual<br>transverse magnetization | T1, DP weighting                                                    |                                                                         |
|                  | Ultrafast GE                                         | ++ speed<br>cardiac perfusion                                       | Poor T1 weighting                                                       |
|                  | Ultrafast GE with<br>magnetization preparation       | ++ speed<br>AngioMRI Gado<br>Cardiac perfusion / viability          |                                                                         |
|                  | Steady state GE                                      | + signal<br>++ speed                                                | Complex contrast                                                        |
|                  | Contrast enhanced steady state GE                    | Not much signal<br>T2 weighted                                      |                                                                         |
|                  | Balanced<br>steady state GE                          | ++ signal, ++ speed<br>Flow correction                              |                                                                         |
|                  | Echoplanar                                           | ++++ speed<br>Perfusion<br>MRIf BOLD<br>Diffusion                   | Limited resolution<br>Artifacts                                         |
|                  | Hybrid echo                                          | ++ speed                                                            |                                                                         |

SAR reduction



### cada a pelos s pelo

#### am







#### É a matriz de dados obtidos em RM





### $2DFT^{1}$



Os pontos do espaço de frequências espaciais (K space) são amostrados em uma grade cartesiana, cada linha é coletada para uma phase encoding e tem duração TR







**7T-**1

### É

#### **TF espacial**

Neste caso, ao invés da análise de um sinal variando, a TF decompõe a variação de intensidade em função da posição. A frequência é chamada de frequência espacial





Magnitude Phase of each frequency component along x and y



### Equipamento – notas

Sistemas de RF
Parallel imaging:
< tempo de aquisição</li>



Sistemas de RF: unbundled phased arrays coils (multiple receive channels) parallel (SMASH, SENSE) K-T Sparse

Processamento adicional para reconstrução:









# Resolução espacial



 É determinada pelas características de aquisição do K-space

 Resolução: inversamente proporcional à maior frequência espacial

$$\frac{1}{\Delta x} = \frac{k_x(\max)}{\pi} = \frac{\gamma G_x T}{2\pi}$$

$$\frac{1}{\Delta y} = \frac{k_y(\max)}{\pi} = \frac{\gamma G_y T}{2\pi}$$

 $G_x$  ( $G_y$ ) é a amplitude do gradiente em x (y) T é o tempo de duração da leitura

Clínica (1,5T a 3T) ~ (x,y) 1 -2 mm Ultra High Field ~ 0,1 x 01mm



### Contraste



Se os parâmetros de aquisição forem ajustados para refletir a concentração de prótons em cada ponto, a imagem é chamada de imagem de densidade de prótons

- Esta imagem pode não variar muito entre os diferentes tecidos
  - Imagem de baixo contraste

Utilização dos parâmetros T<sub>1</sub> e T<sub>2</sub>, cuja variação é grande entre os tecidos, pode melhorar o contraste



### Contraste







**T1** 



DP

**T**2



## Contraste - T<sub>1</sub>







T<sub>1</sub> pode ser evidenciado se o tempo de repetição da sequência de pulsos (T<sub>R</sub>) for menor do que o tempo necessário para a recuperação longitudinal da magnetização

Se dois tecidos com  $T_1$  diferentes estiverem sendo amostrados em uma sequência com  $T_R$  pequeno, a amplitude do sinal com  $T_1$  mais curto será menor, uma vez que uma quantidade maior de prótons já voltou à condição de equilíbrio



## Contraste - T<sub>2</sub>





 T<sub>2</sub> pode ser evidenciado se o tempo de eco (T<sub>E</sub>) for aumentado

Como a amplitude do pulso é função de T<sub>2</sub>, o sinal proveniente do tecido com T<sub>2</sub> mais longo terá maior amplitude



## Contraste - Gd



- Gadolínio é utilizado como agente de contraste em RM
- O efeito nas imagens: redução no tempos de relaxamento T1 eT2





Imagens com realce em T1



## Contraste – fluxo/difusão



Usando sequencias de pulso específicas é possível ressaltar velocidade e a difusão de moléculas de água



**T**2

T1

357

Difusão



Imagem de fluxo sanguíneo aorta



Tecidos -  $T_1 e T_2$ 



|                | T1 (ms)  | T2 (ms)  |
|----------------|----------|----------|
| Água           | 3000     | 3000     |
| Massa cinzenta | 810      | 100      |
| Massa branca   | 680      | 90       |
| Fígado         | 420      | 45       |
| Gordura        | 240      | 85       |
| Gadolínio      | Reduz T1 | Reduz T2 |

T1 e T2 longo (água): escuro em imagem T1 claro em imagem T2
T1 curto e T2 longo (gordura) claro em imagem T1 cinza em imagem T2
Contraste (Gadolínio) reduz tempos de T1 eT2 sinal mais forte em imagens T1 reduz o signal imagens T2



### fMRI cerebral



- RM estrutural produz mapas espaciais das propriedades dos núcleos de hidrogênio, contidos principalmente em moléculas de água
- A ressonância magnética funcional (fMRI): detecção de pequenas mudanças nos sinais usados para produzir imagens de ressonância magnética associadas à atividade neuronal



Imagem estrutural ponderada em T1: • Resolução espacial alta • Diferencia # tipos de tecido

Figura: Acer et al. Neurodegenerative Diseases Using Magnetic Resonance Imaging and Stereology. In:Neurodegenerative Diseases - Processes, Prevention, Protection and Monitoring (2011). DOI: 10.5772/28423.



**Imagem RM funcional ponderada em T2:** < Resolução espacial ; > Resolução temporal

Mudanças de sinal → relacionadas a estímulos

Experimento de fMRI:

- Sequência de imagens de RM individuais
- Possível estudar as mudanças na oxigenação em regiões do cérebro ao longo do tempo



## fMRI: BOLD



Abordagem mais comum para fMRI:

- Utiliza o contraste dependente do nível de oxigenação do sangue (BOLD – Blood Oxigenation Level Dependent)
   Mede as demandas metabólicas – consumo de oxigênio – que ocorrem após um estímulo ou tarefa
- Aumento na atividade neural estimula o aumento no fluxo sanguíneo local para atender à maior demanda por oxigênio
- A mudança no fluxo sanguíneo, excede o necessário:
  - Concentração de oxiemoglobina é maior em relação à deoxihemoglobina

Propriedades magnéticas #



 ↑ Oxiemoglobina torna o campo magnético local mais uniforme ➤ T2 mais longo



# Block design





"B" state images

"A" state images

Contrast map

Resposta neural à mudança de estados no estímulo é acompanhada por uma resposta hemodinâmica

Resting

state

Stimulated

state

arterial

 Detectada por aquisição rápida e contínua de imagens de RM sensibilizadas para mudanças no sinal BOLD

Diferença média de sinal entre os dois estados é calculada por métodos de análise de séries temporais

Geração de mapa de contraste

 O mapa de ativação estatístico é obtido usando um limiar
 Mapa retrata a probabilidade de que um voxel esteja ativado (dada a incerteza devido ao ruído e às pequenas diferenças no sinal BOLD)

Figuras: Core. Principles and practice of functional MRI of the human brain. J. Clin. Invest. 112:4-9 (2003). doi:10.1172/JCI200319010.



# Aplicações Clínicas



O mapeamento de funções sensoriais e motoras críticas pode ser realizado em um equipamento de MRI

 Tarefas simples ou estímulos sensoriais em blocos

Planejamento cirúrgico:

- Uma série de tarefas simples é realizada em sequência para identificar áreas funcionais críticas
- Essas áreas são sobrepostas a imagens anatômicas de alta resolução
  Figura: Core. Principles and practice of functional MRI of the human brain. J. Clin. Invest. 112:4-9 (2003). doi:10.1172/JCI200319010.

#### Motor activation



Visual activation





Auditory activation

Language activation





## Referências



#### **MRI Básico**

- www.imaios.com/en/ (on line courses medicine)
- MRI Physisc Course YouTube Videos (https://www.youtube.com/watch?v=gtnOlotFgUY)
- <u>http://www.mri-physics.net/bin/mri-physics-en-rev1.3.pdf (downloadable book</u>
  - MRI Physics For anyone who does not have a degree in physics. Evert J Blink)
- WWW.cis.rit.edu/htbooks/mri/ (on line book The basics of MRI. Joseph P. Hornak)
- <u>https://radiopaedia.org/articles/mri-2</u> (on line source: articles, cases, courses)

#### Itens avançados

- Hamilton et al. Recent advances in parallel imaging for MRI. Progress in Nuclear Magnetic Resonance Spectroscopy. (2017) 101:71–95
- Salerno et al Recent Advances in Cardiovascular Magnetic Resonance Techniques and Applications. Circ Cardiovasc Imaging. (2017) 10:e003951. DOI: 10.1161/ CIRCIMAGING.116.003951.
- Liang et al. Deep Magnetic resonance Image Reconstruction Inverse problems meet neural networks. IEEE Signal Processing Magazine. (2020) jan: 141-151.
- Martina F. Callaghana & Nadège Corbin. Functional MRI principles and acquisition strategies. Advances in Magnetic Resonance Technology and Applications, Volume 4, ISSN 2666-9099. https://doi.org/10.1016/B978-0-12-822479-3.00027-0
- Copyright © 2021.

#### Perguntas e respostas em MRI http://mri-q.com/index.html





# Obrigada!

#### Marina de Sá Rebelo marina.rebelo@hc.fm.usp.br